鬼佬大哥大
  • / 13
  • 下載費用:30 金幣  

充分考慮鐵塔結構彈性形變的輸電鐵塔桿件應力計算方法.pdf

摘要
申請專利號:

CN201510422952.7

申請日:

2014.08.26

公開號:

CN105069191A

公開日:

2015.11.18

當前法律狀態:

授權

有效性:

有權

法律詳情: 授權|||實質審查的生效IPC(主分類):G06F 17/50申請日:20140826|||公開
IPC分類號: G06F17/50 主分類號: G06F17/50
申請人: 國家電網公司; 江蘇省電力公司; 江蘇省電力公司南通供電公司
發明人: 徐劍峰; 郭成功; 葛樂; 朱張蓓; 朱富云; 龔燈才; 朱衛; 吳曉楠; 蔣徐勇; 尹海海
地址: 100031北京市西城區西長安街86號
優先權:
專利代理機構: 南通市永通專利事務所32100 代理人: 葛雷
PDF完整版下載: PDF下載
法律狀態
申請(專利)號:

CN201510422952.7

授權公告號:

||||||

法律狀態公告日:

2018.03.16|||2015.12.16|||2015.11.18

法律狀態類型:

授權|||實質審查的生效|||公開

摘要

本發明公開了一種充分考慮鐵塔結構彈性形變的輸電鐵塔桿件應力計算方法,首先利用有限單元法建立鐵塔結構的有限元力學模型,并根據鐵塔結構組成進行整體結構的離散化;再對每一單元生成單元剛度矩陣,結合鐵塔結構中各桿件之間的空間角度關系和連接關系,疊加生成整體剛度矩陣;然后,根據鐵塔所受載荷生成載荷陣列,并以節點位移陣列作為未知量,與整體剛度矩陣,載荷陣列組成矩陣方程;最后,通過求解矩陣方程,獲取節點應變,最終得到鐵塔結構中每根桿件的應力。本發明通過數學方法直接對輸電鐵塔桿件應力進行精確求解,可為鐵塔結構安全評價提供科學依據。

權利要求書

1.一種充分考慮鐵塔結構彈性形變的輸電鐵塔桿件應力計算方法,其特征在于:包括如
下步驟:
步驟1:根據有限單元法建立鐵塔結構的有限元力學模型,根據得到的力學模型獲取鐵
塔節點;并將鐵塔結構離散化,得到與鐵塔兩節點間桿件數目相同的單元,單元彼此之間僅
靠節點相連;鐵塔中主材與主材、主材與斜材、斜材與斜材的交匯點視為節點;
步驟2:針對每個單元和節點位移,分別生成單元剛度矩陣[k](e)和節點位移陣列
并根據桿件之間的空間角度關系、桿件之間的連接關系,轉換疊加出鐵塔整體剛度矩陣

步驟3:將鐵塔所受均布載荷和非節點載荷等效移置到節點上,形成節點載荷陣列
其中 [ R ] ( e ) = [ K ] ( e ) [ δ ] ( e ) , ]]>并考慮到矩陣方程 [ K ] ( e ) [ δ ] ( e ) = [ R ] ( e ) ]]>中的奇異性,引入鐵
塔塔腿四節點的位移約束條件,求解矩陣方程,得到節點位移陣列
步驟4:計算鐵塔節點的應變、應力,獲取鐵塔結構每根桿件應力;
所述步驟1中的鐵塔結構離散化方法是將鐵塔中主材與主材、主材與斜材、斜材與斜材
的交匯點歸結為節點,每兩個節點之間的桿件視為一個桿單元;首先建立鐵塔結構的有限元
力學模型,以鐵塔的橫擔方向作為整體坐標系的x軸,線路方向作為y軸,豎直方向作為z
軸,并滿足右手定則;以桿單元所在直線作為單元局部坐標系的x軸,桿件與局部坐標系下
的x軸方向重合,其正方向與整體坐標系x軸正方向一致。

說明書

充分考慮鐵塔結構彈性形變的輸電鐵塔桿件應力計算方法

本申請是申請號201410423136.3、申請日2014.8.26、名稱“一種基于有限元分析的輸電
鐵塔桿件應力計算方法”的分案申請。

技術領域

本發明涉及一種對輸電鐵塔進行結構力學分析并精確計算每根桿件應力的方法,屬于輸
電線路運行狀態安全評價領域。

背景技術

電能生產與傳輸是國家經濟社會發展的命脈,輸電線路更是關系國計民生的“生命線”。
輸電線路作為重要的生命線工程,為電力能源的高效供給和合理分配提供了有力保證。經濟
社會的持續健康發展,對輸電線路運行的安全和可靠性提出了更高要求。然而,由于我國幅
員遼闊,輸電線路路徑長、塔架高、大量穿越深山大河,甚至是無人區,自然地理氣象條件
復雜多變,輸電線路作為大電網的主干,其自身是一個巨大的環境災害承載體。長期運行資
料表明線路安全事故大多由機械力學原因造成。雖然在線路規劃設計中,已基于鐵塔塔材理
論計算強度值,按特定工況條件計算允許應力并設置安全系數,在一定程度保證線路的安全
運行。但實際運行工況復雜且時變,且無法完全由設計規范所預計,部件實際運行應力可能
超出安全閾值;因此實際輸電線路雖已嚴格按規范設計、施工、運行,但斷線、倒塔等安全
事故仍時有發生。

針對08年特大冰雪災害,業界和學界專家普遍認為電網缺乏科學有效的防災減災事故預
警綜合體系等是停電事故發生的重要原因之一。建立這一體系的關鍵是對輸電線路的安全狀
態給予科學評價。當前相關研究主要通過應用拉力傳感器,設計在線應力監測裝置。由于硬
件成本、裝置本體易受外力破壞等影響因素,其進一步推廣應用受到了制約。開發一種零硬
件成本、無環境制約、可復用在所有運行輸電線路的結構安全評價系統成為了電網安全運行
的當務之急,其中對鐵塔桿件進行精確的應力分布計算是其中的關鍵。

針對輸電鐵塔的應力分布分析計算,見諸公開報導的技術路線均是對鐵塔結構進行多次
簡化等效,將鐵塔所受載荷進行簡單的分解或疊加,并忽略鐵塔結構的彈性形變。此種分析
方法給出的結果,無法為安全評價提供準確地應力數據。從力學分析的角度考慮,不精確。
故本發明提出,對鐵塔結構進行有限元建模,考慮到鐵塔結構的彈性形變,對每一根桿件進
行力學分析,并根據鐵塔結構對單根桿件的力學性質進行合理疊加,給出整體鐵塔結構的精
確力學性質,以得到鐵塔結構在復雜載荷下的精確應力分布。

發明內容

為了解決上述問題,本發明提出一種基于有限元分析的輸電鐵塔桿件應力計算方法,用
于分析計算鐵塔每根桿件的應力,包括如下步驟:

步驟1:根據有限單元法建立鐵塔結構的有限元力學模型,根據得到的力學模型獲取鐵
塔節點;并將鐵塔結構離散化,得到與鐵塔兩節點間桿件數目相同的單元,單元彼此之間僅
靠節點(鐵塔中主材與主材、主材與斜材、斜材與斜材的交匯點視為節點)相連;

步驟2:針對每個單元和節點位移,分別生成單元剛度矩陣[k](e)和節點位移陣列
并根據桿件之間的空間角度關系、桿件之間的連接關系,轉換疊加出鐵塔整體剛度矩陣

步驟3:將鐵塔所受均布載荷和非節點載荷等效移置到節點上,形成節點載荷陣列
(其中 [ R ] ( e ) = [ K ] ( e ) [ δ ] ( e ) ]]>),并考慮到矩陣方程 [ K ] ( e ) [ δ ] ( e ) = [ R ] ( e ) ]]>中的奇異性,引入
鐵塔塔腿四節點的位移約束條件,求解矩陣方程,得到節點位移陣列

步驟4:計算鐵塔節點的應變、應力,獲取鐵塔結構中薄弱的桿件。

其中,步驟1中的鐵塔結構離散化方法是將鐵塔中主材與主材、主材與斜材、斜材與斜
材的交匯點歸結為節點,每兩個節點之間的桿件視為一個桿單元。

步驟2中的節點位移陣列和單元剛度矩陣[k](e)分別為:

1)點位移陣列的表達式為:

[ δ ] ( e ) = [ δ ] 1 [ δ ] 2 [ δ ] 3 . . . [ δ ] n [ δ ] i = u i v i w i θ x i θ y i θ z i , i = 1 , 2 , ... , n ]]>

其中,為整體坐標系中的節點位移陣列;為第1個節點的位移陣列;為第2個節
點的位移陣列;以此類推為第n個節點的位移陣列;ui,vi,wi為第i節點在局部坐標系
中三個方向的線位移;θxi,θyi,θzi為第i節點處截面繞三個坐標軸的轉動,θxi代表截面的
扭轉,θyi,θzi分別代表截面在xz及xy坐標面內的轉動。

2)單元剛度矩陣[k](e)的表達式為:


其中,[k](e)為桿單元在單元局部坐標系內的剛度矩陣;A為桿單元橫截面面積;Iy為在xz面
內截面慣性矩;Iz為在xy面內的截面慣性矩;Ip為單元的扭轉慣性矩;l為長度;E和G分
別為材料的彈性模量和剪切模量。

根據所獲得的單元剛度矩陣[k](e)并依據桿件之間的空間角度關系、桿件之間的連接關系,
即可得到鐵塔整體剛度矩陣

步驟3中的節點載荷矩陣為:

[ R ] ( e ) = [ R ] 1 [ R ] 2 [ R ] 3 . . . [ R ] n , [ R ] i = N x i N y i N z i M x i M y i M z i , i = 1 , 2 , ... n ]]>

其中,為整體坐標中所有節點載荷陣列;為整體坐標中第i個節點的載荷列陣;Nxi為
第i個節點的軸向力,Nyi、Nzi分別為第i個節點在xy及xz面內的剪力;Mxi為第i個節點
的扭矩,Myi、Mzi為第i個節點在xz及xy面內的彎矩。

考慮到矩陣方程中為奇異矩陣,為使得方程組有解,本發明中引入
鐵塔4個塔腳與基礎連接部分固定,限制鐵塔結構的剛性位移這一約束條件,從而保證整體
剛度方程具有唯一解。

步驟4中計算鐵塔節點的應變和應力公式為:

σ x σ y σ z τ x y τ y z τ z x = E ( 1 - μ ) ( 1 + μ ) ( 1 - 2 μ ) 1 μ 1 - μ μ 1 - μ 0 0 0 μ 1 - μ 1 μ 1 - μ 0 0 0 μ 1 - μ μ 1 - μ 1 0 0 0 0 0 0 1 - 2 μ 2 ( 1 - μ ) 0 0 0 0 0 0 1 - 2 μ 2 ( 1 - μ ) 0 0 0 0 0 0 1 - 2 μ 2 ( 1 - μ ) ϵ x ϵ y ϵ z γ x y γ y z γ z x ]]>

其中,σx,σy,σz為坐標軸x,y,z方向上的3個正應力分量;τxy,τyz,τzx為在xy
平面,yz平面,zx平面內的3個切應力分量;分別為鐵塔空間結
構在發生形變時,節點處在坐標軸x,y,z三個方向上的產生的線應變分量;
為鐵塔空間結構在形變時,節點處在xy平面,yz平面,zx平面
內產生的3個剪應變分量。;u=u(x,y,z),v=v(x,y,z),w=w(x,y,z)分別為鐵塔空間結構在
形變時,節點在坐標軸x,y,z方向的位移;E為桿件的彈性模量;μ為泊松比。

本發明的技術效果:

1)充分考慮鐵塔結構的彈性形變,對每一根桿件進行力學分析,根據鐵塔結構對單根桿
件的力學性質進行疊加,使得分析結果更加精確。

2)不僅可分析單一工況下鐵塔結構受力,對分析復雜工況下的鐵塔結構受力分析也具有
優越的性能。

3)計算中引入鐵塔4個塔腳與基礎連接部分固定,限制鐵塔結構的剛性位移這一約束條
件,從而保證整體剛度方程具有唯一解,巧妙地解決了矩陣方程中
的奇異性矩陣的奇異性問題。

附圖說明

圖1為220kV干字型鐵塔示意圖。

圖2為鐵塔模型中塔腳施加約束條件示意圖。

具體實施方式

一種基于有限元分析的輸電鐵塔桿件應力計算方法,可概括為四個階段:前期處理、有
限元力學分析、工況荷載處理和后期處理。前期處理包括建立鐵塔結構的有限元力學模型和
對整體結構進行離散化處理;有限元力學分析即對鐵塔結構的有限元力學模型進行分析,結
合鐵塔結構中各桿件之間的空間角度關系和連接關系,疊加生成整體剛度矩陣;工況荷載處
理即將鐵塔所受均布載荷、非節點載荷等效移置到節點上,形成節點載荷陣列;后期處理即
以節點位移陣列作為未知量,與整體剛度矩陣,載荷陣列組成矩陣方程,并求解矩陣方程,
給出節點應變,最終找出鐵塔結構中薄弱的桿件。該方法主要包括如下步驟:

步驟1:根據有限單元法建立鐵塔結構的有限元力學模型,根據得到的力學模型獲取鐵
塔節點;并將鐵塔結構離散化,得到與鐵塔兩節點間桿件數目相同的單元,單元彼此之間僅
靠節點(鐵塔中主材與主材、主材與斜材、斜材與斜材的交匯點視為節點)相連;

步驟2:針對每個單元和節點位移,分別生成單元剛度矩陣[k](e)和節點位移陣列
并根據桿件之間的空間角度關系、桿件之間的連接關系,轉換疊加出鐵塔整體剛度矩陣

步驟3:將鐵塔所受均布載荷和非節點載荷等效移置到節點上,形成節點載荷陣列
(其中 [ R ] ( e ) = [ K ] ( e ) [ δ ] ( e ) ]]>),并考慮到矩陣方程 [ K ] ( e ) [ δ ] ( e ) = [ R ] ( e ) ]]>中的奇異性,引入
鐵塔塔腿四節點的位移約束條件,求解矩陣方程,得到節點位移陣列

步驟4:計算鐵塔節點的應變、應力,獲取鐵塔結構中薄弱的桿件。

下面對每個步驟作進一步詳細說明:

步驟1中:根據有限單元法建立鐵塔結構的有限元力學模型,根據得到的力學模型獲取
鐵塔節點;并將鐵塔結構離散化,得到與鐵塔兩節點間桿件數目相同的單元,單元彼此之間
僅靠節點(鐵塔中主材與主材、主材與斜材、斜材與斜材的交匯點視為節點)相連,其實施
過程為:

首先建立鐵塔結構的有限元力學模型,以鐵塔的橫擔方向作為整體坐標系的x軸,線路
方向作為y軸,豎直方向作為z軸,并滿足右手定則;以桿單元所在直線作為單元局部坐標
系的x軸,桿件與局部坐標系下的x軸方向重合,其正方向與整體坐標系x軸正方向一致。

輸電鐵塔作為空間桿件系統,用桿-梁單元(以后簡稱桿單元)進行離散,本發明中將鐵
塔中主材與主材、主材與斜材、斜材與斜材的交匯點化為節點,每兩個節點之間的桿件視為
一個桿單元。由于鐵塔的結構比較復雜,桿件數目比較多,若在結構離散化即劃分單元時,
單元分的越小,單元數目就越多,計算時間就越長,因此考慮按照鐵塔本身的自然結構劃分,
既提高了計算精度,又減少了計算工作量。

步驟2中:針對每個單元和節點位移,分別生成單元剛度矩陣[k](e)和節點位移陣列
并根據桿件之間的空間角度關系、桿件之間的連接關系,轉換疊加出鐵塔整體剛度矩陣

對鐵塔結構離散化后,要對單元進行力學特性分析,即確定單元節點力和節點位移之間
的關系。為了分析和確定這一關系,需要選擇位移模式,位移函數是單元上點的位移對點的
坐標的函數,本方法用單元內部點的坐標的多項式來表示,空間中的桿件,每個節點具有6
個自由度,即桿件除了承受一維軸力、兩維剪力和兩維彎矩的作用外,還可能承受一維扭矩
的作用。并且,空間桿單元承受一維軸力、兩維剪力、兩維彎矩、一維扭矩,即對應著節點
的6個自由度,分別為3個方向上的線位移和在節點處截面繞3個坐標軸的轉動,因此單元
內部點的坐標的多項式可表示為δ=k1u+k2v+k3w+k4θx+k5θy+k6θz,據此,可形成所有節點
的位移陣列

[ δ ] ( e ) = [ δ ] 1 [ δ ] 2 [ δ ] 3 . . . [ δ ] n , [ δ ] i = u i v i w i θ x i θ y i θ z i , i = 1 , 2 , ... , n ]]>

其中,為整體坐標系中的節點位移陣列;為第1個節點的位移陣列;為第2個節
點的位移陣列;以此類推為第n個節點的位移陣列;ui,vi,wi為第i節點在局部坐標系
中三個方向的線位移;θxi,θyi,θzi為第i節點處截面繞三個坐標軸的轉動,θxi代表截面的
扭轉,θyi,θzi分別代表截面在xz及xy坐標面內的轉動。

建立單元剛度方程的基本步驟為:在假定單元位移函數的基礎上,根據彈性力學理論,
來建立應變、應力與節點位移之間的關系式。然后根據虛位移原理,求得單元節點力與節點
位移之間的關系,從而得出如下單元剛度矩陣[k](e):


其中,[k](e)為桿單元在單元局部坐標系內的剛度矩陣;A為桿單元橫截面面積;Iy為在xz面
內截面慣性矩;Iz為在xy面內的截面慣性矩;Ip為單元的扭轉慣性矩;l為長度;E和G分
別為材料的彈性模量和剪切模量。

單元單元剛度矩陣[k](e)得到后,根據桿件之間的空間角度關系、桿件之間的連接關系,
轉換疊加出鐵塔整體剛度矩陣其具體實施過程如下:

首先,假設局部坐標為x,y,z;整體坐標為以從局部坐標系的x軸正方向順
時針轉到整體坐標系的軸正方向為正,則x軸的方向余弦為:

l x x = c o s ( x , x ) , l x y = c o s ( x , y ) , l x z = c o s ( x , z ) ]]>

y軸的方向余弦為

l y x = c o s ( y , x ) , l y y = c o s ( y , y ) , l y z = c o s ( y , z ) ]]>

z軸的方向余弦為

l z x = c o s ( z , x ) , l z y = c o s ( z , y ) , l z z = c o s ( z , z ) ]]>


[ λ ] 01 = l x x l x y l x z l y x l y y l y z l z x l z y l z z ]]>

則整體坐標系內的單元剛度矩陣表示為:

[ k ] ( e ) = [ λ ] T [ k ] ( e ) [ λ ] ]]>

其中,[λ0]為節點轉換陣,[λ]
為坐標轉換矩陣,[k](e)為桿單元在單元局部坐標系內的剛度矩陣。

整體剛度矩陣的集成規則如下:

1)先求出每個單元的剛度矩陣[k](e);

2)將的每個子塊進行換號,換成對應的整體編號;

3)將換成以后的字塊送到整體剛度矩陣中的對應位置上;

4)若在同一位置上有幾個單元的相應子塊送到時,則應進行疊加。

經過上述步驟后,就可以得到整體剛度矩陣中的每個子塊,從而形成了整體剛度矩陣

其中,為第j個節點產生單位位移時,在第i個節點上引起的節點力,稱為剛度子
矩陣。值得注意的是:中每個子塊都是6×6階矩陣,如果整體結構具有n個節點,那么
整體剛度矩陣的階數6n×6n。

步驟3將鐵塔所受均布載荷和非節點載荷等效移置到節點上,形成節點載荷陣列
(其中 [ R ] ( e ) = [ K ] ( e ) [ δ ] ( e ) ]]>),并考慮到矩陣方程 [ K ] ( e ) [ δ ] ( e ) = [ R ] ( e ) ]]>中的奇異性,引入
鐵塔塔腿四節點的位移約束條件,求解矩陣方程,得到節點位移陣列其具體實施過程
為:

首先將鐵塔所受均布載荷、非節點載荷等效移置到節點上,形成節點載荷陣列空
間中的桿件,每個節點具有6個自由度,即桿件除了承受軸力、剪力和彎矩的作用外,還可
能承受扭矩的作用。并且,空間桿單元承受一維軸力、兩維剪力、兩維彎矩、一維扭矩,即
對應著節點的6個自由度。輸電鐵塔的桿單元正是空間桿單元。

[ R ] ( e ) = [ R ] 1 [ R ] 2 [ R ] 3 . . . [ R ] n , [ R ] i = N x i N y i N z i M x i M y i M z i , i = 1 , 2 , ... , n ]]>

其中,為整體坐標中所有節點載荷陣列;為整體坐標中第i個節點的載荷列陣;Nxi為
第i個節點的軸向力,Nyi、Nzi分別為第i個節點在xy及xz面內的剪力;Mxi為第i個節點
的扭矩,Myi、Mzi為第i個節點在xz及xy面內的彎矩。

由于矩陣方程中為奇異矩陣,方程組無解,若要求解該方程,必須
引入約束條件,限制鐵塔結構的剛性位移,保證整體剛度方程有唯一解。位移約束條件的作
用是使結構上的節點的位移分量為常數值,即δi=δ0。引入位移約束條件,就是要將δi=δ0引
入到結構總體剛度方程中。

本發明中,采用對角元素置1法,將δi=δ0引入整體剛度矩陣

K 11 K 12 ... K 1 i ... K 1 n K 21 K 22 ... K 2 i ... K 2 n . . . . . . . . . . . . K i 1 K i 2 ... K i i ... K i n . . . . . . . . . . . . K n 1 K n 2 ... K n i ... K n n δ 1 δ 2 . . . δ i . . . δ n = R 1 R 2 . . . R i . . . R n ]]>

針對輸電鐵塔的4個塔腿中,與基礎連接的部分是固定端約束,因此δ0=0;將K的第i行的
主對角線元素Kii置1,其余元素清零,且將第i行的載荷項Ri用δ0代替,上式變為

K 11 K 12 ... 0 ... K 1 n K 21 K 22 ... 0 ... K 2 n . . . . . . . . . . . . 0 0 ... 1 ... 0 . . . . . . . . . . . . K n 1 K n 2 ... 0 ... K n n δ 1 δ 2 . . . δ i . . . δ n = R 1 R 2 . . . 0 . . . R n ]]>

通過置1法將位移約束條件δi=δ0引入到整體剛度方程中,并沒有改變矩陣K和R中的
各元素儲存順序,而且矩陣K仍然為對稱矩陣。

本發明計算方法中,對與基礎相連的4個塔腿節點的子矩陣采用置1法,即可代入24個
位移邊界條件,消除整體剛度矩陣的奇異性,從而采用高斯消元法進行矩陣方程求解。

步驟4:計算節點應變、應力等,找出鐵塔結構中最薄弱的桿件,其實施過程如下:

由鐵塔結構的整體剛度矩陣方程求解出各節點的位移δ后,就可以得到各單元的節點位
移δe。鐵塔結構受力后,其內部各點將沿x,y,z三個坐標軸方向發生位移。如果各點沿x,
y,z三個坐標軸方向的位移以u,v,w表示,它們是點的坐標函數,即u=u(x,y,z),v=v(x,y,z),
w=w(x,y,z)。

鐵塔結構在形變時,內部任意一點處有3個線應變分量εx,εy,εz以及3對剪應變分量
γxy=γyx,γyz=γzy,γzx=γxz。由彈性力學可知,應變與位移之間的關系即幾何方程為:

ϵ x = u x , γ x y = u y + v x ]]>

ϵ y = v y , γ y z = v z + w y ]]>

ϵ z = w z , γ z x = w x + u z ]]>

δ e = ϵ x ϵ y ϵ z γ x y γ y z γ z x ]]>

式中εx,εy,εz為分別為鐵塔空間結構在發生形變時,節點處在坐標軸x,y,z三個方向上
的產生的應變分量;γxy,γyz,γzx為鐵塔空間結構在形變時,節點處在xy平面,yz平面,zx
平面內產生的的3個應變分量。

鐵塔結構受到作用時,內部任意一點處的應力狀態也是三維的,有3個正應力分量σx,
σy,σz以及三對切應力分量τxy=τyx,τyz=τzy,τzx=τxz。

在線彈性范圍內,應力和應變用如下方程表示:

σ x σ y σ z τ x y τ y z τ z x = E ( 1 - μ ) ( 1 + μ ) ( 1 - μ ) 1 μ 1 - μ μ 1 - μ 0 0 0 μ 1 - μ 1 μ 1 - μ 0 0 0 μ 1 - μ μ 1 - μ 1 0 0 0 0 0 0 1 - 2 μ 2 ( 1 - μ ) 0 0 0 0 0 0 1 - 2 μ 2 ( 1 - μ ) 0 0 0 0 0 0 1 - 2 μ 2 ( 1 - μ ) ϵ x ϵ y ϵ z γ x y γ y z γ z x ]]>

其中,σx,σy,σz為坐標軸x,y,z方向上的3個正應力分量;τxy,τyz,τzx為在xy平面,
yz平面,zx平面內的3個切應力分量;分別為鐵塔空間結構在發
生形變時,節點處在坐標軸x,y,z三個方向上的產生的線應變分量;
為鐵塔空間結構在形變時,節點處在xy平面,yz平面,zx平面
3個平面內產生的剪應變分量;E為桿件的彈性模量;μ為泊松比。

在本說明書中未作詳細描述的內容屬本領域技術人員的公知技術。

關 鍵 詞:
充分 考慮 鐵塔 結構 彈性 形變 輸電 應力 計算方法
  專利查詢網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
關于本文
本文標題:充分考慮鐵塔結構彈性形變的輸電鐵塔桿件應力計算方法.pdf
鏈接地址:http://www.wwszu.club/p-6386052.html
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服客服 - 聯系我們

[email protected] 2017-2018 zhuanlichaxun.net網站版權所有
經營許可證編號:粵ICP備17046363號-1 
 


收起
展開
鬼佬大哥大